
Scheme->C Index to the
3Revised Report on the Algorithmic Language Scheme

28 September 1990

expand expand-onceImplementation Notes
fixed->float fixed?
float->fixed float?

Scheme->C is an implementation of the language flush-buffer format3Scheme as described in the Revised Report on the get-output-string
Algorithmic Language Scheme (SIGPLAN Notices, getprop
V21, #12, December 1986). implementation-information

my-rusage
open-fileThe implementation is known to not conform to the
open-input-stringrequired portions of the report in the following ways:
open-output-string• The syntax for numbers reflects the peek-char

underlying C implementation. Scheme port->stdio-file
programs may not use the numeric prefixes

pp proceed
#i and #e, and numbers may not contain

putprop
as a digit.

read-eval-print
remove remove!• The control flow of compiled programs is
remq remq!constrained by the underlying C

implementation. As a result, some tail remv remv!
calls are not compiled as tail calls. reset

save-heap
scheme-byte-ref

The implementation has been extended beyond the scheme-byte-set!
report in the following ways: scheme-int-ref

• With the previously noted exceptions, the scheme-int-set!
implementation conforms to the required scheme-tscp-ref

3.95portions of Revised , 11 March 1989. scheme-tscp-set!
set-top-level-value!• Additional procedures: set-write-width!

after-collect signal
bit-and bit-lsh string->uninterned-symbol
bit-not bit-or top-level
bit-rsh bit-xor top-level-value
bpt trace unbpt
c-byte-ref c-byte-set! uninterned-symbol?
c-double-ref c-double-set! untrace
c-float-ref c-float-set! when-unreferenced
c-int-ref c-int-set! write-count write-width
c-shortint-ref
c-shortint-set! • Additional syntax:
c-shortunsigned-ref define-c-external
c-shortunsigned-set! define-constant
c-string->string define-external
c-tscp-ref c-tscp-set! define-in-line
c-unsigned-ref define-macro include
c-unsigned-set! module
collect collect-all unless when
collect-rusage cons*

• Additional variables:define-system-file-task
*args*echo
*error-handler*enable-sytem-file-tasks
obarray *result*error eval
stderr-port stdin-portexit

2

stdout-port (* number ...) returns the product of its arguments.
3Revised 19.

Index
args arguments of the procedure when a
breakpoint has been hit. The value of this symbol will

" delimits strings. A " is represented inside a string be used as the arguments when the user continues from3constant by \". Revised 24. the breakpoint. See bpt, proceed.

3#(denotes the start of a vector. Revised 25. *error-handler* the error handling procedure.
See error.

3#\character written notation for characters. Revised
23. *obarray* is a vector of lists of symbols. It is used

by read to assure that symbols written and then read
3back in are eqv?. See interned, Revised 17.#\formfeed ASCII form feed character (#o14).

3Revised 23.

result result of the procedure when a breakpoint
has been hit. The value of this symbol be returned as#\linefeed ASCII line feed character (#o12).
the value of the procedure after the user continues from3Revised 23.
the breakpoint. See bpt, proceed.

3#\newline new line character (#o12). Revised 23.
\ASCII-character tells read to treat the
ASCII-character as a letter when reading a symbol. If
the character is a lower-case alphabetic character, it will#\return ASCII carriage return character (#o15).

33 not be upshifted. Revised 17.Revised 23.

33 \" represents a " inside a string constant. Revised 24.#\space ASCII space character (#o40). Revised 23.

3 ‘back-quote-template abbreviation for (quasiquote#\tab ASCII tab character (#o11). Revised 23.
3back-quote template). Revised 11.

3#b binary radix prefix. Revised 19.
3(used to group and notate lists. Revised 5.

3#d decimal radix prefix. Revised 19.
3() the empty list. Revised 14.

#f boolean constant for false. Note that while the
3) used to group and notate lists. Revised 5.empty list () is also treated as a false value in

conditional expressions, it is not the same as #f.
3Revised 12.

(+ number ...) returns the sum of its arguments.
3Revised 19.

3#o octal radix prefix. Revised 19.

,expression abbreviation for (unquote expression)
3 that causes the expression to be replaced by its value in#t boolean constant for true. Revised 12.

3the back-quote-template. Revised 11.

3#x hex radix prefix. Revised 19.
,@expression abbreviation for (unquote-splicing
expression) that causes the expression to be evaluated

3’expression abbreviation for (quote expression). and "spliced" into the back-quote-template. Revised
3Revised 7, 15. 11.

3

(- number number ...) with two or more arguments, this -m module command line flag to scc to specify the
returns the difference of its arguments, associating to name of a module that must be initialized by calling the
the left. With one argument it returns the additive procedure module__init. Note that the Scheme

3 compiler will downshift the alphabetic characters ininverse of the argument. Revised 20.
module names supplied in the module directive.

-C command line flag to scc that will cause the
-nh command line flag to sci. When it is supplied,compiler to compile the Scheme files source.sc to C
the interpreter version header will not be printed on thesource in source.c. No further processing is
standard output file.performed.

-np command line flag to sci. When it is supplied,-I directory command line flag to supply a directory to
prompts for input from standard input will not bebe searched by include when it is looking for a
printed on standard output.source file. When multiple flags are supplied, the

directories are searched in the order that the flags are
specified.

-q command line flag to sci. When it is supplied, the
result of each expression evaluation will not be printed
on standard output.-Ob command line flag to scc that controls bounds

checking. When it is supplied to the compiler, no
bounds checking code for vector or string accesses will

-pg command line flag to scc that will cause it tobe generated. Supplying this flag is equivalent to
produce profiled code for run-time measurement usingsupplying the flags -f ’*bounds-check*’
gprof. The profiled library will be used in lieu of the’#f’.
standard Scheme library.

-Og command line flag to scc that controls the
-scgc flag command line flag to any Scheme programgeneration of stack-trace debugging code. When it is
that controls the reporting of garbage collectionsupplied to the compiler, stack-trace code will not be
statistics. If flag is set to 1, then garbage collectiongenerated.
statistics will be printed on stderr. This flag will
override SCGCINFO.

-On command line flag to scc that controls number
representation. When it is supplied to the compiler, all

-sch integer command line flag to any Schemenumbers will be assumed to be fixed integers.
program to set the heap size in megabytes. If it is notSupplying this flag is equivalent to supplying the flags
supplied, and the SCHEAP environment variable was-f ’*fixed-only*’ ’#t’.
not set, and the program did not have a default, then a
4MB heap will be used. This flag will override
SCHEAP.-Ot command line flag to scc that controls type error

checking. When it is supplied, no error checking code
will be generated. Supplying this flag is equivalent to

-schf filename command line flag to any Schemesupplying the flags -f ’*type-check*’ ’#f’.
program to initialize the heap by loading it from the file
filename. The minimum heap size used will be that of
the Scheme program that saved the image. This flag-e command line flag to sci. When it is supplied, all
will override SCHEAPFILE. Note that a heap imagetext read on the standard input file will be echoed on
may only be loaded by the same program that saved it.the standard output file.

-scl integer command line flag to any Scheme-emacs command line flag to sci. When supplied,
program to set the full collection limit. When morethe interpreter assumes that it is being run by GNU
than this percent of the heap is allocated following aemacs.
generational garbage collection, then a full garbage
collection will be done. The default value is 33. This

-i command line flag to scc that will combine the flag will override SCLIMIT.
source and object files into a Scheme interpreter.
Module names for files other than Scheme source files

-scm symbol command line flag to any Schememust be supplied using the -m command line flag.
program to cause execution to start at the procedure that

4

is the value of symbol, rather than at the main program. bytes, the currently allocated storage in bytes, and the
Note that the Scheme read procedure typically allocation percentage that will cause a full garbage
upshifts alphabetic characters. Thus, to start execution collection. The value returned by the procedure is
in the Scheme interpreter, one would enter -scm ignored.
READ-EVAL-PRINT on the command line.

3alist a list of pairs. Revised 16.
3. denotes a dotted-pair: (obj . obj). Revised 14.

(and expression ...) syntax for a conditional expression.
3.sc file name extension for Scheme->C source files. Revised 9.

(/ number ...) with two or more arguments, this returns (append list ...) returns a list consisting of the
the quotient of its arguments, associating to the left. elements of the first list followed by the elements of the

3With one argument it returns the multiplicative inverse other lists. Revised 16.
3of the argument. Revised 20.

(apply procedure arg-list) calls the procedure with
; indicates the start of a comment. The comment the elements of arg-list as the actual arguments.

3 3continues until the end of the line. Revised 5. Revised 26.

(< number number number ...) predicate that returns #t (apply procedure obj ... arg-list) calls the procedure
when the arguments are monotonically increasing. with the list (append (list obj ...) arg-list) as the

3 3Revised 19. actual arguments. Revised 26.

(<= number number number ...) predicate that returns (asin number) returns the arcsine of its argument.
3#t when the arguments are monotonically Revised 20.

3nondecreasing. Revised 19.

(assoc obj alist) finds the first pair in alist whose
(= number number number ...) predicate that returns #t car field is equal? to obj. If no such pair exists,

3 3when the arguments are equal. Revised 19. then #f is returned. Revised 16.

3=> used in a cond conditional clause. Revised 8. (assq obj alist) finds the first pair in alist whose car
field is eq? to obj. If no such pair exists, then #f is

3returned. Revised 16.
(> number number number ...) predicate that returns #t
when the arguments are monotonically decreasing.

3Revised 19. (assv obj alist) finds the first pair in alist whose car
field is eqv? to obj. If no such pair exists, then #f is

3returned. Revised 16.
(>= number number number ...) predicate that returns
#t when the arguments are monotonically

3nonincreasing. Revised 19. (atan number) returns the arctangent of its argument.
3Revised 20.

(abs number) returns the magnitude of its argument.
3Revised 20. (atan number number) returns the arctangent of its

3arguments. Revised 20.

(acos number) returns the arccosine of its argument.
3Revised 20. back-quote-template list or vector structure that may

3contain ,expression and ,@expression forms. Revised
11.

after-collect is a variable in the top level
environment. Following each garbage collection, if its
value is not #f, then it is assumed to be a procedure (begin expression ...) syntax where expression’s are
and is called with three arguments: the heap size in evaluated left to right and the value of the last

5

3 arguments) returns a true value.expression is returned. Revised 10.

(c-byte-ref c-pointer integer) returns the byte atbindings a list whose elements are of the form: (symbol
the integer byte of c-pointer as a number.expression), where the expression is the initial value to

3place in the location bound to the symbol. Revised 9.

(c-byte-set! c-pointer integer number) sets the
byte at the integer byte of c-pointer to number and(bit-and number ...) returns an unsigned number
returns number as its value.representing the bitwise and of its 32-bit arguments.

(c-double-ref c-pointer integer) returns the double(bit-lsh number integer) returns an unsigned
at the integer byte of c-pointer as a number.number representing the 32-bit value number shifted

left integer bits.

(c-double-set! c-pointer integer number) sets the
double at the integer byte of c-pointer to number and(bit-not number ...) returns an unsigned number
returns number as its value.representing the bitwise not of its 32-bit argument.

(c-float-ref c-pointer integer) returns the float at(bit-or number ...) returns an unsigned number
the integer byte of c-pointer as a number.representing the bitwise inclusive or of its 32-bit

arguments.

(c-float-set! c-pointer integer number) sets the
float at the integer byte of c-pointer to number and(bit-rsh number integer) returns an unsigned
returns number as its value.number representing the 32-bit value number shifted

right integer bits.

(c-int-ref c-pointer integer) returns the int at the
integer byte of c-pointer as a number.(bit-xor number ...) returns an unsigned number

representing the bitwise exclusive or of its 32-bit
arguments.

(c-int-set! c-pointer integer number) sets the int at
the integer byte of c-pointer to number and returns
number as its value.body one or more expressions that are be executed in

3sequence. Revised 9.

c-pointer a number that is the address of a structure
outside the Scheme heap, or a string that is a C-(boolean? expression) predicate that returns #t if

3 structure within the Scheme heap.expression is #t or #f. Revised 12.

(c-shortint-ref c-pointer integer) returns the(bpt) syntax to return a list of the procedures that have
short int at the integer byte of c-pointer as a number.been breakpointed.

(c-shortint-set! c-pointer integer number) sets(bpt symbol) syntax to set a breakpoint on the
the short int at the integer byte of c-pointer to numberprocedure that is the value of symbol. Each entry and
and returns number as its value.exit of the procedure will provide the user with an

opportunity to examine and alter the current state of the
computation. The computation is continued by entering

(c-shortunsigned-ref c-pointer integer) returnscontrol-D. The computation may be terminated and a
the short unsigned at the integer byte of c-pointer as areturn made to the top level of the interpreter by
number.entering (top-level). See *args*, *result*,

top-level, unbpt.
(c-shortunsigned-set! c-pointer integer
number) sets the short unsigned at the integer byte of(bpt symbol procedure) syntax to set a conditional
c-pointer to number and returns number as its value.breakpoint on the procedure that is the value of symbol.

A breakpoint occurs when (apply procedure

6

(c-string->string c-pointer) returns a Scheme (cdr pair) returns the contents of the cdr field of the
3string that is a copy of the null-terminated string pair. Revised 15.

c-pointer.

(cd...r pair) compositions of car and cdr.
3(c-tscp-ref c-pointer integer) returns the tagged Revised 15.

Scheme to C pointer at the integer byte of c-pointer.

(cddddr pair) returns (cdr (cdr (cdr (cdr pair)))).
3(c-tscp-set! c-pointer integer expression) sets the Revised 15.

tagged Scheme->C pointer at the integer byte of
c-pointer to expression and returns expression as its

(ceiling number) returns the smallest integer that isvalue.
3not smaller than its arguments. Revised 20.

(c-unsigned-ref c-pointer integer) returns the
char syntax for declaring a non-Scheme procedure,unsigned at the integer byte of c-pointer as a number.
procedure argument, or global variable as the C type
char. When a char value must be supplied, an

(c-unsigned-set! c-pointer integer number) sets expression of type character must be supplied. When a
the unsigned at the integer byte of c-pointer to number char value is returned, a value of type character will
and returns number as its value. be returned.

c-type syntax for declaring the type of a non-Scheme (char->integer character) returns an integer
procedure, procedure argument, or global. The allowed whose value is the ASCII character code of character.

3types are: pointer, char, int, shortint, Revised 24.
longint, unsigned, shortunsigned,
longunsigned, float, double, tscp, or void.

(char-alphabetic? character) predicate that
3returns #t when character is alphabetic. Revised 23.

(car pair) returns the contents of the car field of the
3pair. Revised 15.

(char-ci<=? character character) predicate that
returns #t when the first character is less than or equal

3(caar pair) returns (car (car pair)). Revised 15. to the second character. Upper case and lower case
letters are treated as though they were the same

3character. Revised 23.
(ca...r pair) compositions of car and cdr.

3Revised 15.
(char-ci<? character character) predicate that
returns #t when the first character is less than the

(call-with-current-continuation second character. Upper case and lower case letters are
procedure) calls procedure with the current treated as though they were the same character.3 3continuation as its argument. Revised 27. Revised 23.

(call-with-input-file string procedure) calls (char-ci=? character character) predicate that
procedure with the port that is the result of opening the returns #t when the first character is equal to the3file string for input. Revised 28. second character. Upper case and lower case letters are

treated as though they were the same character.
3Revised 23.(call-with-output-file string procedure) calls

procedure with the port that is the result of opening the
3file string for output. Revised 28. (char-ci>=? character character) predicate that

returns #t when the first character is greater than or
equal to the second character. Upper case and lower(case key clause clause ...) syntax for a conditional
case letters are treated as though they were the sameexpression where key is any expression, and each 3character. Revised 23.clause is of the form ((datum ...) expression expression

...). The last clause may be an "else clause" of the form
3(else expression expression ...). Revised 8.

7

(char-ci>? character character) predicate that (char? expression) predicate that returns #t when
3returns #t when the first character is greater than the expression is a character. Revised 23.

second character. Upper case and lower case letters are
treated as though they were the same character.

3 character Scheme object that represents printedRevised 23.
characters. See #\character, #\character-name,

3Revised 23.
(char-downcase character) returns the lower case

3value of character. Revised 24.
(close-input-port input-port) closes the file

3associated with input-port. Revised 29.
(char-lower-case? letter) predicate that returns

3#t when letter is lower-case. Revised 24.
(close-output-port output-port) closes the file

3associated with output-port. Revised 29.
(char-numeric? character) predicate that returns

3#t when character is numeric. Revised 23.
(close-port port) closes the file associated with

3port. Revised 29.
(char-ready? optional-input-port) predicate that
returns #t when a character is ready on the

3 (collect) invokes the garbage collector to perform aoptional-input-port. Revised 29.
generational collection. Normally, garbage collection is
invoked automatically by the Scheme system.

(char-upcase character) returns the upper case
3value of the character. Revised 24.

(collect-all) invokes the garbage collector to
perform a full collection. Normally, garbage collection
is invoked automatically by the Scheme system.(char-upper-case? letter) predicate that returns

3#t when letter is upper-case. Revised 24.

(collect-rusage) returns a vector containing
information about resources consumed by the garbage(char-whitespace? character) predicate that
collector. The information is that contained in thereturns #t when character is a whitespace character.

3 rusage structure. See Ultrix-32 Programmer’s Manual,Revised 23.
2-62.

(char<=? character character) predicate that returns
complex number complex numbers are not supported in#t when the first character is less than or equal to the

33 Scheme->C. Revised 18.second character. Revised 23.

(complex? expression) predicate that returns #t(char<? character character) predicate that returns
when expression is a complex number. All#t when the first character is less than the second

33 Scheme->C numbers are complex. Revised 19.character. Revised 23.

(cond clause clause ...) syntax for a conditional(char=? character character) predicate that returns
expression where each clause is of the form (test#t when the first character is equal to the second

3 expression ...) or (test => procedure). The last clausecharacter. Revised 23.
may be of the form (else expression expression ...).

3Revised 8.
(char>=? character character) predicate that returns
#t when the first character is greater than or equal to

3 (cons expression expression) returns a newlythe second character. Revised 23. 1 2
allocated pair that has expression as its car, and1

3expression as its cdr. Revised 15.2(char>? character character) predicate that returns
#t when the first character is greater than the second

3character. Revised 23. (cons* expression expression ...) returns an object
formed by consing the expressions together from right

8

to left. If only one expression is supplied, then that compiler declaration that symbol is defined in module1
expression is returned. symbol .2

(cos number) returns the cosine of its argument. (define-external symbol TOP-LEVEL) syntax
3Revised 20. for a compiler declaration that symbol is a top-level

symbol. Its value is to be found via the *obarray*.

(current-input-port) returns the current default
3input port. Revised 28. (define-external symbol "" string) syntax for a

compiler declaration that symbol has the external name
string.

(current-output-port) returns the current
3default output port. Revised 28.

(define-external symbol string string) syntax1 2
for a compiler declaration that symbol is in the module

(define symbol expression) syntax that defines the string and has the external name string _string .1 1 2value of expression as the value of either a top-level
3symbol or a local variable. Revised 11.

(define-external (symbol formals) symbol)1 2
syntax for a compiler declaration that symbol is a1(define (symbol formals) body) syntax that defines a
Scheme procedure defined in module symbol .2procedure that is either the value of a top-level symbol

3or a local variable. Revised 11.

(define-external (symbol . formal) symbol)1 2
syntax for a compiler declaration that symbol is a(define (symbol . formal) body) syntax that defines a 1
Scheme procedure defined in module symbol .procedure that is either the value of a top-level symbol 2

3or a local variable. Revised 11.

(define-external (symbol formals) "" string)
syntax for a compiler declaration that symbol is a(define-c-external symbol c-type string) syntax
procedure that has the external name string.for a compiler declaration that defines symbol as a non-

Scheme global variable with the name string and the
type c-type. (define-external (symbol . formal) "" string)

syntax for a compiler declaration that symbol is a
procedure that takes a variable number of arguments(define-c-external (symbol c-type ...) c-type1 2 and has the external name string.string) syntax for a compiler declaration that defines

symbol as a non-Scheme procedure with arguments of
the type specified in the list c-type . The procedure’s1 (define-external (symbol formals) string1name is string and it returns a value of type c-type .2 string) syntax for a compiler declaration that symbol is2

a procedure in the module string that has the external1
name string _string .(define-c-external (symbol c-type c-type) 1 21 2

c-type string) syntax for a compiler declaration that3
defines symbol as a non-Scheme procedure that takes a (define-external (symbol . formal) string1variable number of arguments. The types of the initial

string) syntax for a compiler declaration that symbol is2arguments are specified by the list c-type . Any1 a procedure in the module string that has the external1additional arguments must be of the type c-type . The2 name string _string .1 2procedure’s name is string and it returns a value of type
c-type .3

(define-in-line (symbol formals) body) syntax
that defines a procedure that is to be compiled "in-line".(define-constant symbol expression) syntax that

defines a macro that replaces all occurences of symbol
with the value of expression, evaluated at the time of (define-in-line (symbol . formal) body) syntax
the definition. that defines a procedure that is to be compiled "in-line".

(define-external symbol symbol) syntax for a (define-macro symbol (lambda (form expander)1 2

9

expression ...)) syntax that defines a macro expansion 29.
procedure. Macro expansion is done using the ideas
expressed in Expansion-Passing Style: Beyond

(enable-system-file-tasks flag) enables (flagConventional Macros, 1986 ACM Conference on Lisp
is #t) or disables (flag is #f) system file tasking andand Functional Programming, 143-150.
returns the previous system file tasking state. When the
value of flag is the symbol wait, system file tasking is

(define-system-file-task file idle-task enabled and the Scheme program is blocked until there
file-task) installs the idle-task and file-task procedures are no system file tasks.
for system file number file. When a Scheme program
reads from a port and no characters are internally

(eq? expression expression) predicate that is thebuffered, the idle-task for each system file is called. 1 2
finest test for equivalence between expression andThen, the file-task for each system file that has input 1

3pending is called. As long as no characters are expression . Revised 14.2
available on the Scheme port, the Scheme system will
idle, calling the file-task for each system file as input

(equal? expression expression) predicate that is thebecomes available. A system file task is removed by 1 2
coarsest test for equivalence between expression andsupplying #f as the idle-task and file-task. 1

3expression . Revised 14.2

(delay expression) syntax used together with the
3procedure force to implement call by need. Revised (eqv? expression expression) predicate that is the1 210. medium test for equivalence between expression and1

3expression . Revised 13.2
(display expression optional-output-port) writes a
human-readable representation of expression to

(error symbol format-template expression ...) reports3optional-output-port. Revised 29.
an error. The procedure name is symbol and the error
message is produced by the format-template and
optional expressions. The procedure error is equivalent(do (var ...) (test expression ...) command ...) syntax
to (lambda x (apply *error-handler*for an iteration construct. Each var defines a local
x)). See *error-handler*.variable and is of the form (symbol init step) or (symbol

3init). Revised 10.

(eval expression) evaluates expression. Any macros
in expression are expanded before evaluation.double syntax for declaring a non-Scheme procedure,

procedure argument, or global variable as the C type
double. When a double value must be supplied, an

(eval-when list expression ...) syntax to evaluateexpression of type number must be supplied. When a
expressions when the current situation is in list. Whendouble value is returned, a value of type number is
this form is evaluated by the Scheme interpreter andreturned.
eval is a member of the situation list, then the
expressions will be evaluated. When this form is
evaluated by the Scheme compiler and compile is a(echo port) turns off echoing on port.
member of the situation list, then the expressions will
be evaluated within the compiler. When this form is

(echo port output-port) echos port on output-port. All evaluated by the Scheme compiler, and load is a
characters read from or written to port are also written member of the situation list, then the compiler will
to output-port. compile the form (begin expression ...)).

else keyword in last clause of cond or case form. (even? integer) predicate that returns #t if integer is
3even. Revised 20.

environment the set of all variable bindings in effect at
3some point in the program. Revised 5. exact integers are exact, all other numbers are not.

3Revised 18.

(eof-object? expression) predicate that returns #t
3if expression is equal to the end of file object. Revised (exact->inexact number) returns the inexact

10

3 best represents the value of float.representation of number. Revised 21.

(float? expression) predicate that returns #t if(exact? number) predicate that returns #t if number
3 expression is a float value.is exact. Revised 19.

(floor number) returns the largest integer not larger(exit) returns from the current read-eval-print
3than number. Revised 20.procedure.

(flush-buffer optional-output-port) forces output(exp number) returns exponential function of number.
3 of all characters buffered in optional-output-port.Revised 20.

(for-each procedure list list ...) applies procedure to(expand expression) returns the value of expression
3each element of the lists in order. Revised 26.after all macro expansions. See define-macro.

(force promise) returns the forced value of a promise.(expand-once expression) returns the value of
3Revised 26.expression after one macro expansion. See

define-macro.

formals a symbol or a list of symbols that are the
3arguments. Revised 7.expression a Scheme construct that returns a value.

3Revised 6.

(format #f format-template expression ...) returns a
string that is the result of outputting the expressions(expt number number) returns number raised to the1 2 1
according to the format-template.3power number . Revised 21.2

(format format-template expression ...) returns a3fix format descriptor. Revised 22.
string that is the result of outputting the expressions
according to the format-template.

fixed Scheme->C internal representation of an integer.
The maximum fixed value is 536,870,911 and the

(format output-port format-template expression ...)minimum is -536,870,912. It is represented in a 32-bit
output the expressions to output-port according to theword with two bits used by the tag.
format-template.

(fixed->float fixed) returns the float
(format #t format-template expression ...) output therepresentation of fixed.
expressions to the current output port according to the
format-template.

(fixed? expression) predicate that returns #t when
expression is a fixed.

format descriptor a list that describes the type of output
conversion to be done by number->string. The
supported forms are (int), (fix integer), and (scifloat syntax for declaring a non-Scheme procedure,

3integer). Revised 21.procedure argument, or global variable as the C type
float. When a float value must be supplied, an
expression of type number must be supplied. When a

format-template a string consisting of formatfloat value is returned, a value of type number is
descriptors and literal characters. A format descriptorreturned.
is ~ followed by some other character. When one is
encountered, it is interpreted. Literal characters are
output as is. See ~a, ~A, ~c, ~C, ~s, ~S, ~%, ~~.float Scheme->C internal floating point

representation. This is typically 64-bits.

(gcd number ...) returns the greatest common divisor of
3its arguments. Revised 20.(float->fixed float) returns the fixed number that

11

3(get-output-string string-output-port) returns int format descriptor. Revised 22.
the string associated with string-output-port. The
string associated with the string-output-port is initially

integer integers are represented by fixed values.set to "".
3Revised 18.

(getprop symbol expression) returns the value that
(integer->char integer) returns the characterhas the key eq? to expression from symbol’s property

3whose ASCII code is equal to integer. Revised 24.list. If there is no value associated with expression,
then #f is returned.

(integer? expression) predicate that returns #t
3when expression is an integer. Revised 19.(implementation-information) returns a list

of string or #f values containing information about the
Scheme implementation. The list is of the form

interned symbols that are contained in *obarray*(implementation-name version machine processor
are interned.operating-system filesystem features ...).

(lambda formals body) the ultimate imperative, the(if expression expression) syntax for a conditional1 2 3ultimate declarative. Revised 7.3expression. Revised 8.

(last-pair list) returns the last pair of list.
(if expression expression expression) syntax for a 31 2 3 Revised 16.

3conditional expression. Revised 8.

(lcm number ...) returns the least common multiple of
3(include string) syntax to include the contents of the its arguments. Revised 20.

file string at this point in the Scheme compilation.
Search directories may be specified by the -I

3(length list) returns the length of list. Revised 16.command flag.

3 (let bindings body) syntax for a binding construct thatinexact float numbers are inexact. Revised 18.
computes initial values before any bindings are done.

3Revised 9.
(inexact->exact number) returns the exact

3representation of number. Revised 21.
(let symbol bindings body) syntax for a general

3looping construct. Revised 10.
(inexact? number) predicate that returns #t when

3number is inexact. Revised 19.
(let* bindings body) syntax for a binding construct
that computes initial values and performs bindings

3input-port Scheme object that can deliver characters on sequentially. Revised 9.
3command. Revised 28.

(letrec bindings body) syntax for a binding construct
(input-port? expression) predicate when returns that binds the variables before the initial values are

3 3#t when expression is an input-port. Revised 28. computed. Revised 9.

3int syntax for declaring a non-Scheme procedure, letter an alphabetic character. Revised 24.
procedure argument, or global variable as the C type
int. When a int value must be supplied, an

list the empty list, or a pair whose cdr is a list.expression of type number must be supplied. When a
3Revised 15.int value is returned, a value of type number is

returned. The Scheme->C system uses this type
internally and requires that it be 32 bits long.

(list expression ...) returns a list of its arguments.
3Revised 16.

12

3(list->string list) returns the string formed from Revised 24.
3the characters in list. Revised 25.

(make-vector integer) returns a vector of length
3(list->vector list) returns a vector whose elements integer with unknown elements. Revised 25.

3are the members of list. Revised 26.

(make-vector integer expression) returns a vector of
(list-ref list integer) returns the integer element of length integer with all elements set to expression.

3 3list. Elements are numbered starting at 0. Revised 16. Revised 25.

(list-tail list integer) returns the sublist of list (map procedure list list ...) returns a list constructed by
obtained by omitting the first integer elements. applying procedure to each element of the lists. The

3 3Revised 16. order of application is not defined. Revised 26.

(load string) loads the expressions in the file string (max number number ...) returns the maximum of its
3into the Scheme interpreter. The results of the arguments. Revised 19.

expressions are printed on the current output port.
3Revised 30.

(member expression list) returns the first sublist of list
such that (equal? expression (car sublist)) is true. If

3(loade string) loads the expressions in the file string no match occurs, then #f is returned. Revised 16.
into the Scheme interpreter. The contents of the file
and the results of the expressions are printed on the

3 (memq expression list) returns the first sublist of listcurrent output port. Revised 30.
such that (eq? expression (car sublist)) is true. If no

3match occurs, then #f is returned. Revised 16.
(loadq string) loads the expressions in the file string
into the Scheme interpreter. The results of the

3 (memv expression list) returns the first sublist of listexpressions are not printed. Revised 30.
such that (eqv? expression (car sublist)) is true. If no

3match occurs, then #f is returned. Revised 16.
(log number) returns the natural logarithm of number.

3Revised 20.
(min number number ...) returns the minimum of its

3arguments. Revised 19.
longint syntax for declaring a non-Scheme
procedure, procedure argument, or global variable as

(module symbol clause ...) syntax to declare modulethe C type long int. When a long int value
information for the Scheme->C compiler. Themust be supplied, an expression of type number must be
module form must be the first item in the source file.supplied. When a long int value is returned, a
The module name is a symbol that must be a legal Cvalue of type number is returned.
identifier. Using this information, the compiler is able
to construct an object module that is similar in structure

longunsigned syntax for declaring a non-Scheme to a Modula 2 module. Following the module name
procedure, procedure argument, or global variable as come optional clauses. If the module is to provide the
the C type long unsigned. When a long "main" program, then a clause of the form (main
unsigned value must be supplied, an expression of symbol) is provided that indicates that symbol is the
type number must be supplied. When a long initial procedure. It will be invoked with one argument
unsigned value is returned, a value of type number is that is a list of strings that are the arguments that the
returned. program was invoked with. A minimum (and default)

heap size can be specified by the clause (HEAP
integer), where the size is specified in megabytes. The

(make-string integer) returns a string of length user may control that top-level symbols in this module3integer with unknown elements. Revised 24. are visible as top-level symbols by including a clause of
the form (top-level symbol ...). If this clause
occurs, then only those symbols specified will be made(make-string integer char) returns a string of
top-level. All other top-level symbols in the module willlength integer with all elements initialized to char.
appear at the top-level with names of the form:

13

3module_symbol. If a top-level clause is not expression is a number. Revised 19.
provided, then all top-level symbols in the module will
be made top-level. The final clause, (with symbol ...)

(odd? integer) predicate that returns #t when integerindicates that this module will be linked with other
3is odd. Revised 19.modules. Normally the intermodule linkages are

automatically infered by including all modules that
have external references. However, this mechanism is

(open-file string string) returns a port for file1 2not sufficient to pick up those objects that are only
string that is opened using the Ultrix-32 fopen optionreferenced at runtime. 1
string . See Ultrix-32 Programmer’s Manual, 3-189.2

(modulo integer integer) returns the modulo of its1 2
(open-input-file string) returns an input portarguments. The sign of the result is the sign of the

3 capable of delivering characters from the file string.divisor. Revised 20.
3Revised 28.

(my-rusage) returns a vector containing information
(open-input-string string) returns an input portabout resources consumed by the program. The
capable of delivering characters from the string.information is that contained in the rusage structure.

See Ultrix-32 Programmer’s Manual, 2-62.

(open-output-file string) returns an output port
capable of delivering characters to the file string.(negative? number) predicate that returns #t when

33 Revised 28.number is negative. Revised 19.

(open-output-string) returns an output port(newline optional-output-port) outputs a newline
3 capable of delivering characters to a string. Seecharacter on the optional-output-port. Revised 29.

get-output-string.

(not expression) predicate that returns #t when
3 optional-input-port if present, it must be an input-port.expression is #f or (). Revised 12.

If not present, then it is the value returned by
current-input-port.

(null? expression) predicate that returns #t when
3expression is (). Revised 16.

optional-output-port if present, it must be an
output-port. If not present, then it is the value returned
by current-output-port.number Scheme->C has two internal representations

for numbers: fixed and float. When an arithmetic
operation is to be performed with a float argument, all

(or expression ...) syntax for a conditional expression.arguments will be converted to float as needed, and
3Revised 9.then the operation will be performed. Automatic

3conversion back to fixed is never done. Revised 17.

pair record structure with two fields: car and cdr.
3Revised 14.(number->string number format descriptor)

returns a string that is the printed representation of
3number as specified by format descriptor. Revised 21. (pair? expression) predicate that returns #t when

3expression is a pair. Revised 15.

(number->string number) returns a string with the
printed representation of the number. (peek-char optional-input-port) returns a copy of

the next character available on optional-input-port.

(number->string number radix) returns a string
with the printed representation of the number in the pointer syntax for declaring a non-Scheme
given radix. Radix must be 2, 8, 10, or 16. procedure, procedure argument, or global varible as

being some type of C pointer. When a value must be
supplied, an expression of the type string, procedure, or(number? expression) predicate that returns #t when
number is supplied. This will result in either the

14

address of the first character of the string, the address (rational? number) predicate that returns #t when
of the code associated with the procedure, or the value its argument is a rational number. This is true when

3of the number being used. A pointer value is returned number is an fixed value. Revised 19.
as an non-negative number.

(read optional-input-port) returns the next readable
3port Scheme object that is capable of delivering or object from optional-input-port. Revived 29.

3accepting characters on demand. Revised 28.

(read-char optional-input-port) returns the next
(port->stdio-file port) returns the standard I/O character from optional-input-port, updating the port to

3FILE pointer for port, or #f if the port does not use point to the next character. Revived 29.
standard I/O.

(read-eval-print expression ...) starts a new read-
(positive? number) predicate that returns #t when eval-print loop. The optional expressions allow one to

3number is positive. Revised 19. specify the prompt or the header: PROMPT string
HEADER string. Typing control-D at the prompt will
terminate the procedure. See reset, exit, eval,

(pp expression optional-output-port) pretty-prints proceed.
expression on optional-output-port.

(real? number) predicate that returns #t when its
(pp expression string) pretty-prints expression to the argument is a real number. This is true in Scheme->C

3file string. for any number. Revised 19.

predicate function that returns #t when the condition is (remainder integer integer) returns the remainder1 23true, and #f when the condition is false. Revised 13. of its arguments. The sign is the sign of integer .1
3Revised 20.

(procedure? expression) predicate that returns #t
3when expression is a procedure. Revised 26.

(remove expression list) returns a new list that is a
copy of list with all items equal? to expression
removed from it.(proceed) return from the innermost

read-eval-print loop with an unspecified value.

(remove! expression list) returns list having deleted
all items equal? to expression from it.(proceed expression) return from the innermost

read-eval-print loop with expression as the
value. At the outermost level, expression must be an

(remq expression list) returns a new list that is a copyinteger as it will be used as the argument for a call to
of list with all items eq? to expression removed fromthe ULTRIX-32 procedure exit.
it.

(putprop symbol expression expression) stores1 2 (remq! expression list) returns list having deleted allexpression using key expression on symbol’s property2 1 items eq? to expression from it.
list. See getprop.

(remv expression list) returns a new list that is a copy
(quasiquote back-quote-template) syntax for a of list with all items eqv? to expression removed from3vector or list constructor. Revised 11. it.

(quote expression) syntax whose result is expression. (remv! expression list) returns list having deleted all3Revised 7. items eqv? to expression from it.

(quotient integer integer) returns the quotient of1 2 (reset) returns to the current read-eval-print
its arguments. The sign is the sign of the product of its loop.3arguments. Revised 20.

15

(reverse list) returns a new list with the elements of (scheme-byte-set! sc-pointer integer number)
3 sets the byte at the integer byte of sc-pointer to number.list in reverse order. Revised 16.

The procedure returns number as its value.

(round number) returns number rounded to the closest
3 (scheme-int-ref sc-pointer integer) return the intinteger. Revised 20.

at the integer byte of sc-pointer as a number.

(save-heap string . procedure) saves a copy a
(scheme-int-set! sc-pointer integer number) setsScheme program’s heap in the file named string. When
the int at the integer byte of sc-pointer to number. Thethe heap is reloaded into a newly created process,
procedure returns number as its value.execution will start at procedure that will be called with

a list of the command line arguments. If procedure is
not supplied, then execution will begin at the normal

(scheme-tscp-ref sc-pointer integer) returns thestartup procedure. Note that heap image files may only
tscp at the integer byte of sc-pointer.be used by processes that are running the same code

that was being run by the process that wrote the heap
image file. N.B. Items such as ports are not (scheme-tscp-set! sc-pointer integer expression)
automatically reinitialized. sets the tscp at the integer byte of sc-pointer to

expression. The procedure returns expression as its
value.sc-pointer a Scheme object that is represented by a

tagged pointer to one or more words of memory.

sci shell command to invoke the Scheme->C
Scheme interpreter. See the man page.sc... all modules that compose the Scheme->C

runtime system have module names begining with the
letters sc. All procedures and external variables in 3sci format descriptor. Revised 22.
these modules have names that begin with sc..._.

(set! symbol expression) syntax to set the location
scc shell command to invoke the Scheme->C 3bound to symbol to the value of expression. Revised
Scheme compiler. See the man page. 8.

SCGCINFO environment variable that when set to 1 (set-car! pair expression) sets the car field of pair
will log garbage collection information on stderr. 3to expression. Revised 15.

SCHEAP environment variable that controls the heap (set-cdr! pair expression) sets the cdr field of pair
size. It is set to the desired size in megabytes. If not 3to expression. Revised 15.
set, then the default in the main program will be used.
If a default size is not supplied, then a 4mb heap is
used. (set-top-level-value! symbol expression) sets

the top-level location bound to symbol to value.

SCHEAPFILE environment variable that controls
initialization of the heap from a saved heap image. If it (set-write-width! integer optional-output-port)
is set to the name of a file, then the initial heap for the sets the width of optional-output-port to integer.
program will be loaded from that file.

shortint syntax for declaring a non-Scheme
SCLIMIT environment variable that controls the procedure, procedure argument, or global variable as
amount of heap retained after a generational garbage the C type short int. When a short int value
collection that will force a full collection. It is must be supplied, an expression of type number must be
expressed as a percent of the heap. The default value is supplied. When a short int value is returned, a
33. value of type number is returned.

(scheme-byte-ref sc-pointer integer) returns the shortunsigned syntax for declaring a non-Scheme
byte at the integer byte of sc-pointer as a number. procedure, procedure argument, or global variable as

16

the C type short unsigned. When a short string whose characters are the concatenation of the of
unsigned value must be supplied, an expression of the given strings. Upper and lower case letters are
type number must be supplied. When a short treated as though they were the same character.

3unsigned value is returned, a value of type number is Revised 25.
returned.

(string-ci<=? string string) predicate that1 2
(sin number) returns the sine of its argument. returns #t when string is less than or equal to string .1 23Revised 20. Upper and lower case letters are treated as though they

3were the same character. Revised 25.

(signal number expression) provides a signal handler
for the ULTRIX-32 signal number. The expression is (string-ci<? string string) predicate that returns1 2the signal handler and is either a procedure or a #t when string is less than string . Upper and lower1 2number. When a procedure is supplied, it is called with case letters are treated as though they were the same
the signal number when the signal is present. Numeric 3character. Revised 25.
handler values are interpreted by the underlying
operating system. The previous value of the signal
handler is returned. (string-ci=? string string) predicate that returns1 2

#t when string is equal to string . Upper and lower1 2
case letters are treated as though they were the same(sqrt number) returns the square root of its argument. 3character. Revised 25.3Revised 20.

(string-ci>=? string string) predicate that1 2stderr-port port to output characters to stderr.
returns #t when string is greater than or equal to1
string . Upper and lower case letters are treated as2

3stdin-port port to input characters from stdin. though they were the same character. Revised 25.

stdout-port port to output characters to stdout. (string-ci>? string string) predicate that returns1 2
#t when string is greater than string . Upper and1 2

3 lower case letters are treated as though they were thestring sequence of characters. Revised 24.
3same character. Revised 25.

(string->list string) returns a newly constructed
3 (string-copy string) returns a new string whoselist that contains the elements of string. Revised 25.

3characters are those of the given string. Revised 25.

(string->number string) returns a number
(string-fill! string char) stores char in everyexpressed by string. If string is not a syntactically valid

3element of string. Revised 25.notation for a number then it returns #f.

(string-length string) returns the length of string.(string->number string number) returns a number
3Revised 24.expressed by string with number the default radix.

Radix must be 2, 8, 10, or 16. If string is not a
syntactically valid notation for a number then it returns (string-ref string integer) returns character that is
#f. the integer element of string. The first element is 0.

3Revised 24.
(string->symbol string) returns the interned

3symbol whose name is string. Revised 17. (string-set! string integer character) sets the
integer element of string to character. The first

3element is 0. Revised 24.(string->uninterned-symbol string) returns an
uninterned symbol whose name is string.

(string<=? string string) predicate that returns #t1 2
3(string-append string string ...) returns a new when string is less than or equal to string . Revised1 2

17

325. Revised 30.

(string<? string string) predicate that returns #t (transcript-on string) starts a transcript on the file1 2
33 string. Revised 30.when string is less than string . Revised 25.1 2

(truncate number) returns the truncated value of(string=? string string) predicate that returns #t1 2 3number. Revised 20.3when string is equal to string . Revised 25.1 2

tscp syntax for declaring a non-Scheme procedure,(string>=? string string) predicate that returns #t1 2 procedure argument, or global variable as the C typewhen string is greater than or equal to string .1 2 TSCP. The type TSCP is a tagged pointer to a Scheme
3Revised 25. object. When a tscp value must be supplied, any

expression may be supplied. When a tscp value is
returned, any type of value may be returned.(string>? string string) predicate that returns #t1 2

3when string is greater than string . Revised 25.1 2
(unbpt) syntax to remove all breakpoints.

(string? expression) predicate that returns #t when
3 (unbpt symbol symbol ...) syntax to removeexpression is a string. Revised 24.

breakpoints from the named procedures.

(substring string integer integer) returns a string1 2
(uninterned-symbol? symbol) predicate thatconsisting of integer -integer elements of string2 1
returns #t if symbol is not interned.3starting at element integer . Revised 25.1

(unless expression expression ...) syntax for a1 2(symbol->string symbol) returns the name of
3 conditional form that is equivalent to (if (notsymbol as a string. Revised 17.

expression) (begin expression ...)).1 2

(symbol? expression) predicate that returns #t when
3 (unquote expression) syntax to evaluate theexpression is a symbol. Revised 17.

expression and replaces it in the back-quote-template.
3Revised 11.

syntax indicates a form that is evaluated in a manner
3that is specific to the form. Revised 1.

(unquote-splicing expression) syntax to evaluate
the expression and splices it into the

3back-quote-template. Revised 11.(tan number) returns the tangent of its argument.
3Revised 20.

unsigned syntax for declaring a non-Scheme
procedure, procedure argument, or global variable as(top-level) returns control to the "top-level"
the C type unsigned. When a unsigned valueread-eval-print loop.
must be supplied, an expression of type number must be
supplied. When a unsigned value is returned, a

(top-level-value symbol) returns the value in the value of type number is returned.
location that is the "top-level" binding of symbol.

(untrace) syntax to remove tracing from all
(trace) returns a list of the procedures being traced. procedures.

(trace symbol symbol ...) enables tracing on the (untrace symbol symbol ...) syntax to remove tracing
procedures that are the values of the symbols. from the named procedures.

(transcript-off) turns off the transcript. vector a heterogenous mutable structure whose

18

3 (with-input-from-file string procedure) openselements are indexed by integers. Revised 25.
the file string, makes its port the default input-port,

3then calls procedure with no arguments. Revised 28.
(vector expression ...) returns a newly allocated
vector whose elements contain the given arguments.

3 (with-output-to-file string procedure) opensRevised 25.
the file string, makes its port the default output-port,

3then calls procedure with no arguments. Revised 28.
(vector-fill! vector expression) stores expression

3in every element of vector. Revised 26.
(write expression optional-output-port) outputs
expression to optional-output-port in a machine-

3(vector->list vector) returns a newly created list readable form. Revised 29.
of the objects contained in the elements of the vector.

3Revised 26.
(write-char character optional-output-port) outputs

3character to optional-output-port. Revised 29.
(vector-length vector) returns the number of

3elements in vector. Revised 25.
(write-count optional-output-port) returns the
number of characters on the current line in

(vector-ref vector integer) returns the contents of optional-output-port.
element integer of vector. The first element is 0.

3Revised 25.
(write-width optional-output-port) returns the
width of optional-output-port in characters.

(vector-set! vector integer expression) sets
element integer of vector to expression. The first

3 (zero? number) predicate that returns #t whenelement is 0. Revised 25.
3number is zero. Revised 19.

(vector? expression) predicate that returns #t when
3 ~% format descriptor to output a newline character.expression is a vector. Revised 25.

~~ format descriptor to output a ~.void syntax for declaring a non-Scheme procedure as
returning the C type void. The value of such a
procedure may not be used.

~A format descriptor to output the next expression
using display.

(when expression expression ...) syntax for a1 2
conditional form that is equivalent to (if expression1 ~a format descriptor identical to ~A.
(begin expression ...)).2

~C format descriptor to output the next expression (that
(when-unreferenced expression procedure) must be a character) using write-char.
applys the clean-up procedure procedure (with the
object represented by expression as its argument) at
some point in the future when the object represented by ~c format descriptor identical to ~C.
expression is no longer referenced by the program. The
procedure returns either the cleanup procedure supplied

~S format descriptor to output the next expressionby an earlier call to when-unreferenced, or #f
using write.when no cleanup procedure was defined.

~s format descriptor identical to ~S.(when-unreferenced expression #f) returns either
the cleanup procedure for the object represented by
expression or #f when no cleanup procedure was
defined. In either case, the Scheme system will take no
action when the object represented by expression is no
longer referenced by the program.

